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ISOBARIC VAPOUR-LIQUID EQUILIBRIA
IN THE BINARY SYSTEMS FORMER BY p-XYLENE
WITH 1,2-DICHLOROETHANE, 1,1,1-
TRICHLOROETHANE AND 1,1,2,2-
TETRACHLOROETHANE AT 66.5 kPa™
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Isobaric Vapour-Liquid equilibria of p-xylene+ 1,2-dichloroethane, p-xylene + 1.1,1-trichloroethane
and p-xylene + 1,1,2,2 -tetrachloroethane, binary mixtures measured at 66.5 kPa are reported. Activity
coefficients are evaluated and correlated.

KEY WORDS: Vapour-liquid equilibria, p-xylene, 1,2,-dichloroethane, 1.1,1,-trichloroethane, 1,1,2,2-
tetrachloroethane.

INTRODUCTION

This paper presents vapour-liquid equilibrium data on three binary systems:
p-xylene + 1,2-dichloroethane, p-xylene + 1,1,1-trichloroethane and p-xylene + 1,
1,2,2 + tetrachloroethane, at 66.5 kPa, in continuation of the investigators interest
in a systematic study of the thermalphysical properties of liquid mixtures containing
an alkylbnzene and a chloroethane! ~*. Bhushankumar and Raju® studied the phase
equilibria of the p-xylene + 1,2-dichloroethane system at 97.8 kPa, while Venkates-
wara Roa and Vishwanath! ~3 studied all the three systems at 91.1 kPa This investi-
gation is taken up to study the change in the phase equilibrium of the three systems
at the sub-atmospheric pressure of 66.5 kPa.

EXPERIMENTAL

A recirculation type still, similar to the one described by Dvorak and Boublik®, has
been used for the experiments. The temperatures were measured to an accuracy of

*Author for Correspondence.
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+0.05 K, by means of carefully calibrated mercury-in-glass thermometers. The sys-
tem pressure was maintained at the constant value of 66.5 + 0.0665 kPa by means of
a model # 7 cartesan monostat, procured from Emil. Greiner Co., New York. The
equilibrium conditions were attained in 1 hr time. An additional 30 min. was allow-
ed before the collection of the equilibrium liquid and vapour samples for analysis.
The constancy of the composition was established from three sets of samples col-
lected at 15 min. intervals.

Based on the comparison of the physical properties of the pure liquids reported in
Table 1, the pure compounds were expected to be at least 99.5% pure. The composi-
tions of the liquid and vapour samples at equilibrium were calculated from the
measured value of refractive-index/density and Eqn. (1) developed from the mole
fraction of p-xylene and the corresponding refractive-index/density, and the coeffi-
cients given in Table 2. The characteristic property used was the refractive index at
293.15 K for p-xylene + 1,2-dichloroethane and p-xylene + 1,1, 1-trichloroethane
systems and density at 313.15 K in the case of p-xylene + 1, 1, 2, 2-tetrachloroethane
system.

F=1.0000 4+ BE + CE* + DE? (1)
where F = the molefraction of p-xylene and

(n—ny)

E =
(ny —ny)

Table 1 Comparison of the physical properties of pure liquids with literature” data at

293.15K.

Component Refractive-index Density (¢ - mi™")
This work Literature This work Literature

p-xylene 1.4960 1.4958 0.8560 0.8611

1,2-Dichloroethane 1.4450 1.4447 1.2526 1.2531

1,1,1-Trichloroethane 1.4375 1.4379 1.3384 1.3890

1,1,2,2-Tetrachloroethane 1.4950 1.4949 1.5950 1.5953

Table 2 Coefficients of the composition-characteristic property relation, Egn. (1).

Mixture No. of data B C D PADD
points

p-xylene + 1,2- Dichloroethane 12 —1.2533 0.2159 0.0374 0.23

p-xylene + 1,1,1.- 12 — 1.0556 —0.0468 0.1024 0.20

Trichloroethane

p-xylene + 1,1.2,2- 12 —1.2157 0.3508 —0.1351 0.12

Tetrachloroethane
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in which

n=refractive index of the mixture, n,, n, = refractive indices of pure liquids, for
p-xylene + 1, 2-dichloroethane, and p-xylene + 1,1, 1-trichloroethane systems. In
the case of p-xylene + 1, 1,2, 2-tetrachloroethane system.

E— (p—p1) (3)
(pa—py)

where p = the density of the mixture, and p,, p, = densities of the pure components.

The percent average absolute deviation (PAAD) is represented as:

PAAD — ZH(Fep = Ryl ] 100 o

[Fexpt] N

where N =the number of synthetic samples studied for each system (12 in this
work). Table 2 shows the coefficients of Eqn. (1) for the three systems, together with
the PAAD for the synthetic sample data.

RESULTS

The phase equilibrium data are presented in Tables 3—5. The liquid phase activity
coefficients (y; and y,) are calculated from

Zy ) P
N=""9 ®)
! xlp(l)
and
Z3Y2D
V=% (6)
2 xng

The pure component vapour pressures (p) and p3) at each temperature are cal-
culated from the Antoine equation

A—B
(T+O)

Inp® =

(7)

where p° is the vapour pressure in kPa and Tis the absolute temperature in K using
the values of A, B and C given in Table 6. The vapour pressure data on the pure
substances including the boiling point observations of the pure liquids at
66.5 kPa are represented by the Antoine equation to within +0.1kPa. The cal-
culated values of vapour pressure at different temperatures are shown in the
columns headed p¢ and p$ in Tables 3-5.
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Table 6 Antoine constants of the pure liquids of this study, used in
connection with Eqn. (7).

Substance A B C
p-xylene 14.0618 3347.25 —57.84
1,2-Dichloroethane 14.5305 3128.63 —41.15
1.1,1,-Trichloroethane 13.9904 2802.75 —48.15
1,1,2,2-Tetrachloro- 14.0653 3374.13 —62.15
ethane

The vapour phase imperfection coefficients z, and z, calculated from

zy=exp[{(p—p°) (By; — Vi) +py,0,,}/RT] (8)
z, =exp[{(p — p°,)(By, — V,") + py,?0,,} /RT] 9

with
8,,=2B,,~B,, —B,, (10)

are also recorded in Tables 3—5. The pure component second virial coefficients for
p-xylene are calculated from Tsonopoulos equation®, while for 1,2-dichloroethane,
1,1,1-trichlorethane, they are interpolated from the data given by Dymond and
Smith® and Bohmhammd and Manchen'?. The second Virial Coefficients of 1,1,2,
2-tetrachloroethane are calculated from the generalized equation

B/V,=25208 -192.116 T, —417.455T; —368.78 T; + 116.82 T (11)

developed on the basis of the available literature data on ethylchloride, 1,2-di-
chloroethane and 1,1,1-trichloroethane. All the numerical values of pure component
second virial coefficients are noted in Tables 3-5. Cross-second virial coefficients
(B,,) are calculated from the Pitzer and curl'' type generalization described by Van
Ness and Abbott!2 The correlation of Yen and Woods'? gave the values of molar
volumes of the pure components given in Table 3-5. The critical properties and the
other data needed in the calculations are collected from Reid er al.'*.

THERMODYNAMIC CONSISTENCY

To test the thermodynamic consistency, the practical procedure described by
Fredenslund et al.'® based on the ideas originaly proposed by Van Vess et al.,'® and
Abbott and Van Ness!” is used. The excess Gibbs free energy GF is related to liquid
composition in the form:

(G*/RT)=x,Int; + x,Int, =g = x (1 — X)) q,L,(x;) (12)
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where L,(x,) represents the Legendre function given by
Li(x,) =02k —1)(2x; — 1)L, _(x) — (K = )L, _,(x,)/k (13)

with k=0, 1, 2...n. The set of systems studied in this work could be represented to
good accuracy by the first order Legendre polynomials with the coefficients A, and
A, given in Table 7. The coefficients are used to calculate the activity coefficient y,
through the equation

Iny, =g+ (1 —x,)(dg/dx,) (14)

Values of y,, calculated from Eqn. (5) after substituting the other variables, com-
pared with the measured values of y,;, with an average absolute departure of less
than 0.01 units as shown in Table 7, indicating that the data are thermodynamically
consistent.

The activity coefficient data are fitted to the Van Laar model:

g=A'xx, [x,(4'/B") +x,] (15)
and the Wilson model:

g=—x,In(x; + A ,x;)—x,In(x, + 4,,x,) (16)

DISCUSSION

The results shown in Table 8 indicate that both the Van Laar and Wilson models
adequately represent the phase equilibrium data. The general pattern of the phase
diagrams (not shown in this paper) are comparable to the literature data' =33, The
lowering of the total pressure from about 91.1 kPa to 66.5 kPa has reduced the
boiling temperatures of the mixtures by about 5-10 K and some what broadened

Table 7 Coefficients of the Legendre polynomial and average departure
in the calculation of y,.

Mixture Coefficients No. of Average absolute
of Legendre observations deviation in y,
polynomial

p-xylene + 1,2- Ay =0.0450 12 0.001

dichloroethane A, =0.0365

p-xylene + 1,1,1, Ay=—0.1775 9 0.003

1-trichloroethane A, =0.2020

p-xylene + 1,12,2- A,=0.0250 9 0.002

trichloroethane A, =0.0380
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Table 8 Constants of the Van Laar and Wilson equations.

System Model constants PAAD in
p-xylene + 1,2- VanLaan:4' = 0.0815 0.24
dichloroethane B' =0.0085
Wi]son:A‘2 =0.4561 1.00
AZI = 1.7081
p-xylene + 1,1,1- Van Laan: A' = 0.3795 0.75
trichlorethane B! =0.0245
Wilson:A12 =0.2132 1.21
A, = 2.1432
p-xylene + 1,1,22-  VanLaan:4' = 0.0630 0.71
dichloroethane B'=0.0130
Wilson:4 , =0.5150 0.85
All = 1.6005

PAAD in 1, =[|{{r,expt — 1 cal}/r,exp| ] x 100/N where N is
the number of observations.

the phase diagram. The activity coefficients are near unity and there is no clear trend
with composition, probably due to fluctuations in the total pressure.
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